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SPECTRAL INFLUENCE FUNCTIONS OF BOUNDARY EFFECTS IN PROBLEMS 

DEALING WITH CONTROL OF THERMAL OBJECTS 

Yu. M. Matsevityi, A. P. Siesarenko, and O. S. Tsakanyan UDC 536.12 539.377 

We describe a method for solving problems dealin~ with the optimum control of 
a thermal object that is based on high-speed action where limitations are im- 
posed on the control function and on the thermal state. 

The problem of optimum high-speed control of a thermal object whose dynamics ale des- 
cribed by the following equation of heat conduction 

~ ( x ,  Y, Fo) = v , T ( x  ' Y, Fo), (1) 
OFo 

consists in the determination of such control boundary effects, expressed by piecewise poly- 
nomial functions 

"' (2) 
q, (x, y,  Fo) = ~ a,j @'o) ~i ; t = !, ~ . . . . .  n ; f = 0, ! . . . . .  m,, 

t=o 

which would ensure the transition of the object from a given initial thermal state T(x, y, 0) 
to the final state T(x, y, Fo k) within a minimum of time, with satisfaction of the limita- 
tions imposed both on the controling action (the external limitation) 

qmm<qz(x, y, Fo)< qmax, (3) 

as well as on the thermal state of the object (an internal system of limitations) 

T(x, ~, Fo)<Tpe r, (4) 

A r e ,  g, V o ) < A r p ~ .  ( 5 )  

We will adopt the attainment of the maximum possible rate of temperature change in the 
object in conjunction with the given limitations (3)-(5) as the criteria of optimum control. 

Applying an implicit finite-difference approximation to Eq. (i), for k-th instant of 
time we obtain 

V~ T(~ ~ ,  y) - -  (AFo) -~ T(~) ~ ,  y) = - -  (A F ~ - '  T (~-I) ~, ~. 
(6) 

If we specify the spectral component ~J as the controling action on the i-th segment 
of the object's boundary, with zero actions specified for the remaining (n - i) segments, 
and if we solve system of equations (6) with the zero initial conditions T(x, y, 0) = 0, we 
will obtain the spectral influence function (SIF) Wij(x, y) [i]. 

Having thus determined the remaining SIF, we will represent the temperature at the ob- 
servation point s for the k-th instant of time in the form 
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$ [G Fig. i. Change in the dimensionless temperature 
. . . . . . .  x at the points of observation: i) Tl; 2) T2; 

8 change in the control parameters: 3) a0 ; 4)~ ; 
0~-0,~-~\ ~ 3 5) a~ and ~ = AT- ATper; 6) ~, as a function of 

�9 |/L\ ~ / x  the iteration number. T and are dimensionless 
quantities; 6, %. 
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T(a) t, Xs, Y.) = ~ ~ a;~ ) W,, (Xs, Ys) -~ T~ ) (x,, Ys). ( 7 ) 

The first term in the right-hand side of Eq. (7) characterizes the object's reaction to 

the controling action, while the second term TH(k)(xs, Ys) represents the reaction of the ob- 

ject to the initial action [the temperature T(k-l)(x, y)]. 

The rate at which temperature changes at each time interval is represented in the form 
of the sum of the following two components 

iT(k) (xs, Ys) - -  T (a-l) (x,, vs)l (AFo) "~ = (8) 

a(h)W :x T(~)(xs, gs) T (~-l) (x~, g~) (AFo) -1, 
t=o 

from which the first is associated with the flow of heat to the surface of the object as a 
control function at k-th instant of time, while the second component is related to the temp- 
erature derived as a result of controlling the thermal regime of the object at the previous 
instant of time. 

In order to solve the control problem, it is necessary at each time interval: 

i. to determine SIF of the boundary actions 

W,j(x, y ) ;  l =  I ,  2 . . . . .  n ;  l = O ,  I . . . . .  m~.  

2. to calculate the maximum possible increments ~Tmax(X , y) in temperature using Eq. 
(6), within the limits of the time interval AFo for specified maximum permissible boundary 
actions qmax(~) and zero initial conditions. 

3. to establish the maximum temperature increments at the observation points exhibit- 
ing coordinates(xs, Ys) and (XL, YL), the difference between the these being specified by 
limitation (5). 

4. to calculate the function THk(x, y), solving Eq. (6) with the boundary actions 

equal to zero, and the initial conditions T(k'1)(x, y). 

5. to verify satisfaction of limitations (4) and (5) for the k-th interval at the ob- 
servation points 

ATmax (x., g,) -4-. T~ ~ (xs, Y~) < Tper, (9) 

[hTm.x (x., y.) -l- ~ (Xs, Y~)] - -  IATm~ (xL, 9L ) 4- 74~ ) (xL, YL)] ~-~ A~er. ( 1 0 ) 

6. satisfaction of conditions (9) and (i0) indicates that the rate of change in temp- 
erature for the k-th instant of time is maximum, since it is determined from the limitation 
(3) imposed on the control action. 

7. if conditions (9) and (!0) are not satisfied, the problem is solved by an iteration 
method. The rate of change in temperature diminishes as a consequence of the reduced 
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intensity of the control actions whose magnitude is determined through solution of the in- 
verse heat-conduction problem in which Tpe r is taken as the "observed" temperature, so that 

(x+, v . )  = rp r- (x., ( 1 ) 

while 

(h) A~pe r t h~(h) ATe) (x., y.) = ( 12 ) = - ( . - i )  (xL, yL) + T~ ) (xL, yL) - -  T~ ~ (x., y~), 

where p is the number of the iteration. 

8. the parameters of the boundary actions ~) are determined from the solution of the 
following system of linear algebraic equations (SLAE) 

;.~ E (~) {k) (13)  
f=l ]=0 

s = i, 2, ..., N, where N represents the number of observation points. 

9. the temperature increments are calculated at points with coordinates (XL, YL) from 
the expression 

a mf 

AT (a) "x Wt) (xL, YL) ( 14 ) ~) , L, YL ) = ~ '~  a,, 
I=I  1=0 

and c o n d i t i o n  (10) i s  v e r i f i e d  

[A~(k) T~ ) (xs, [AT~ (XL, PL ) T~ ) (xL )l < AT ~.(p) ~ . ,  y~) + y.)] - -  + , yL per" 

i0. if condition (i0) is not fulfilled, the temperature increment 5Tp+1(k)(xs,. Ys) is 
predicted on the basis of expressions (ii) and (12), and operations 8, 9, and ~ are carried 
out. The iteration process will be curtailed on satisfaction of conditions (9) and ~i0), 
with the specified accuracy, subsequent to which we turn to the determination of the para- 
meters at the next time interval (k + i). 

Evidence as to the conclusion of the solution for the problem will be attained on reach- 
ing the points at which the specified temperature can be observed (given allowable diverg- 
ences), such as will characterize the final thermal state of the object. 

If system (13) has been overdetermined N > mn, and the method of least squares is used 
to bring the system of linear algebraic equations (13) to normal form. 

In the algorithm for the solution of the control problem which we are examining here, 
at each time interval the initial approximations of the temperature increments at the obser- 
vation points are set as high as possible, and this corresponds to the maximum rate cf 
change in temperature, since ~Tma x is a reaction to the maximum permissible control action 
qmax" Consequently, the object is extended beyond the regional boundary of the external lim- 
itation (3). The iteration process is ascribed to the fact that with a maximum rate of 
change in temperature the internal system of limitation (4) and (5) may not be fulfilled. 
Satisfaction of this system of limitations, given the maximum rate of change in temperature, 
will indicate that the final coordinates of the object will slide along the regional bound- 
ary of the internal limitations (4) and (5) [2]. 

Application of the spectral influence functions for the boundary actions in the ~olu- 
tion of the control problem makes it possible to change from a multiple solution of direct 
problems, such as is necessary for verification of the fulfillment of the system of limita- 
tions, to a one-time solution of the inverse heat-conduction problem in which the tempera- 
ture values found at the regional boundary of the internal limitations is used as the "meas- 
ured" temperature value, and as a result of the solution of this problem the sort control ac- 
tion is found. In addition to the reduction in the order of the solved system of equations 
(because of the use of the spectral influence functions), this circumstance enhances a reduc- 
tion in the time required for the solution of the control problem. 

As an example, let us examine the problem of the optimum control in the heating of an 
infinite rectangular prism whose sides are in a ratio of 1:2. 
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Figure 1 shows the changes in the dimensionless temperatures at the points Tl(O.l ; 0.5) 
and T2(I; 0.5), as well as in the parameters of the control actions ao, el, a2, and 6 = AT - 
ATpe r, dependent on the iteration number. 

At the boundary segments FI, F 2, r~ the surface temperature T s = 0 represents the ini- 
tial condition T(x, y, O) = O. 

At the boundary segment F 2 the surface temperature T s = a0 + gl x + a~x 2, 0 g x ~ 2 is 
the sort function under the following limitations: 

T ~ ;  0.~--T(r~;  0 .~<.0, I ;  t=!, ~, 3. 
The solution of the problem was found with Ax = Ay = O, AFo = 0.i. The condition 

8 = maxlT(xi ; 0.9 --T(xi; 0.5) --0.II~--< 10-' 

was fulfilled in the 20-th iteration (p = 20). Here the parameters of the control action 
were equal to: a0 = 0.345; al = 0.1424; a2 = 0.007114. 

The data in these results prove the effectiveness of the proposed method, which may be 
used to solve two-dimensional heating control problems (or cooling) in solids. 

NOTATION 

T, temperature; x, y, spatial coordinates; Fo, dimensionless time; q, heat flow (con- 
trol function); 6, boundary contour coordinate; a~ , boundary-action function parameters; 
Wil, spectral influence functions of boundary actions; 6, magnitude of divergence between 
moaeled function and specified limitation. Subscripts: s and L, observation points; k, 
number of time intervals; p, iteration number; F, boundary segment; s, surface; per, permis- 
sible magnitude. 
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